4-1 Recurrence examples

Give asymptotic upper and lower bound for T(n)T(n) in each of the following recurrences. Assume that T(n)T(n) is constant for nโ‰ค2n \le 2. Make your bounds as tight as possible, and justify your answers.

a. T(n)=2T(n/2)+n4T(n) = 2T(n / 2) + n^4.

b. T(n)=T(7n/10)+nT(n) = T(7n / 10) + n.

c. T(n)=16T(n/4)+n2T(n) = 16T(n / 4) + n^2.

d. T(n)=7T(n/3)+n2T(n) = 7T(n / 3) + n^2.

e. T(n)=7T(n/2)+n2T(n) = 7T(n / 2) + n^2.

f. T(n)=2T(n/4)+nT(n) = 2T(n / 4) + \sqrt n.

g. T(n)=T(nโˆ’2)+n2T(n) = T(n - 2) + n^2.

a. By master theorem, T(n)=ฮ˜(n4)T(n) = \Theta(n^4).

b. By master theorem, T(n)=ฮ˜(n)T(n) = \Theta(n).

c. By master theorem, T(n)=ฮ˜(n2lgโกn)T(n) = \Theta(n^2\lg n).

d. By master theorem, T(n)=ฮ˜(n2)T(n) = \Theta(n^2).

e. By master theorem, T(n)=ฮ˜(nlgโก7)T(n) = \Theta(n^{\lg 7}).

f. By master theorem, T(n)=ฮ˜(nlgโกn)T(n) = \Theta(\sqrt n \lg n).

g. Let d=mmodโ€‰โ€‰2d = m \mod 2,

T(n)=โˆ‘j=1j=n/2(2j+d)2=โˆ‘j=1n/24j2+4jd+d2=n(n+2)(n+1)6+n(n+2)d2+d2n2=ฮ˜(n3). \begin{aligned} T(n) & = \sum_{j = 1}^{j = n / 2} (2j + d)^2 \\ & = \sum_{j = 1}^{n / 2} 4j^2 + 4jd + d^2 \\ & = \frac{n(n + 2)(n + 1)}{6} + \frac{n(n + 2)d}{2} + \frac{d^2n}{2} \\ & = \Theta(n^3). \end{aligned}