4-1 Recurrence examples
Give asymptotic upper and lower bound for T ( n ) T(n) T ( n ) in each of the following recurrences. Assume that T ( n ) T(n) T ( n ) is constant for n โค 2 n \le 2 n โค 2 . Make your bounds as tight as possible, and justify your answers.
a. T ( n ) = 2 T ( n / 2 ) + n 4 T(n) = 2T(n / 2) + n^4 T ( n ) = 2 T ( n /2 ) + n 4 .
b. T ( n ) = T ( 7 n / 10 ) + n T(n) = T(7n / 10) + n T ( n ) = T ( 7 n /10 ) + n .
c. T ( n ) = 16 T ( n / 4 ) + n 2 T(n) = 16T(n / 4) + n^2 T ( n ) = 16 T ( n /4 ) + n 2 .
d. T ( n ) = 7 T ( n / 3 ) + n 2 T(n) = 7T(n / 3) + n^2 T ( n ) = 7 T ( n /3 ) + n 2 .
e. T ( n ) = 7 T ( n / 2 ) + n 2 T(n) = 7T(n / 2) + n^2 T ( n ) = 7 T ( n /2 ) + n 2 .
f. T ( n ) = 2 T ( n / 4 ) + n T(n) = 2T(n / 4) + \sqrt n T ( n ) = 2 T ( n /4 ) + n โ .
g. T ( n ) = T ( n โ 2 ) + n 2 T(n) = T(n - 2) + n^2 T ( n ) = T ( n โ 2 ) + n 2 .
a. By master theorem, T ( n ) = ฮ ( n 4 ) T(n) = \Theta(n^4) T ( n ) = ฮ ( n 4 ) .
b. By master theorem, T ( n ) = ฮ ( n ) T(n) = \Theta(n) T ( n ) = ฮ ( n ) .
c. By master theorem, T ( n ) = ฮ ( n 2 lg โก n ) T(n) = \Theta(n^2\lg n) T ( n ) = ฮ ( n 2 lg n ) .
d. By master theorem, T ( n ) = ฮ ( n 2 ) T(n) = \Theta(n^2) T ( n ) = ฮ ( n 2 ) .
e. By master theorem, T ( n ) = ฮ ( n lg โก 7 ) T(n) = \Theta(n^{\lg 7}) T ( n ) = ฮ ( n l g 7 ) .
f. By master theorem, T ( n ) = ฮ ( n lg โก n ) T(n) = \Theta(\sqrt n \lg n) T ( n ) = ฮ ( n โ lg n ) .
g. Let d = m m o d โโ2 d = m \mod 2 d = m mod 2 ,
T ( n ) = โ j = 1 j = n / 2 ( 2 j + d ) 2 = โ j = 1 n / 2 4 j 2 + 4 j d + d 2 = n ( n + 2 ) ( n + 1 ) 6 + n ( n + 2 ) d 2 + d 2 n 2 = ฮ ( n 3 ) .
\begin{aligned}
T(n) & = \sum_{j = 1}^{j = n / 2} (2j + d)^2 \\
& = \sum_{j = 1}^{n / 2} 4j^2 + 4jd + d^2 \\
& = \frac{n(n + 2)(n + 1)}{6} + \frac{n(n + 2)d}{2} + \frac{d^2n}{2} \\
& = \Theta(n^3).
\end{aligned}
T ( n ) โ = j = 1 โ j = n /2 โ ( 2 j + d ) 2 = j = 1 โ n /2 โ 4 j 2 + 4 j d + d 2 = 6 n ( n + 2 ) ( n + 1 ) โ + 2 n ( n + 2 ) d โ + 2 d 2 n โ = ฮ ( n 3 ) . โ