4.3 The substitution method for solving recurrences
4.3-1
Show that the solution of T ( n ) = T ( n − 1 ) + n T(n) = T(n - 1) + n T ( n ) = T ( n − 1 ) + n is O ( n 2 ) O(n^2) O ( n 2 ) .
We guess T ( n ) ≤ c n 2 T(n) \le cn^2 T ( n ) ≤ c n 2 ,
T ( n ) ≤ c ( n − 1 ) 2 + n = c n 2 − 2 c n + c + n = c n 2 + n ( 1 − 2 c ) + c ≤ c n 2 ,
\begin{aligned}
T(n) & \le c(n - 1)^2 + n \\
& = cn^2 - 2cn + c + n \\
& = cn^2 + n(1 - 2c) + c \\
& \le cn^2,
\end{aligned}
T ( n ) ≤ c ( n − 1 ) 2 + n = c n 2 − 2 c n + c + n = c n 2 + n ( 1 − 2 c ) + c ≤ c n 2 ,
where the last step holds for c > 1 2 c > \frac{1}{2} c > 2 1 .
4.3-2
Show that the solution of T ( n ) = T ( ⌈ n / 2 ⌉ ) + 1 T(n) = T(\lceil n / 2 \rceil) + 1 T ( n ) = T (⌈ n /2 ⌉) + 1 is O ( lg n ) O(\lg n) O ( lg n ) .
We guess T ( n ) ≤ c lg ( n − a ) T(n) \le c\lg(n - a) T ( n ) ≤ c lg ( n − a ) ,
T ( n ) ≤ c lg ( ⌈ n / 2 ⌉ − a ) + 1 ≤ c lg ( ( n + 1 ) / 2 − a ) + 1 = c lg ( ( n + 1 − 2 a ) / 2 ) + 1 = c lg ( n + 1 − 2 a ) − c lg 2 + 1 ( c ≥ 1 ) ≤ c lg ( n + 1 − 2 a ) ( a ≥ 1 ) ≤ c lg ( n − a ) ,
\begin{aligned}
T(n) & \le c\lg(\lceil n / 2 \rceil - a) + 1 \\
& \le c\lg((n + 1) / 2 - a) + 1 \\
& = c\lg((n + 1 - 2a) / 2) + 1 \\
& = c\lg(n + 1 - 2a) - c\lg 2 + 1 & (c \ge 1) \\
& \le c\lg(n + 1 - 2a) & (a \ge 1) \\
& \le c\lg(n - a),
\end{aligned}
T ( n ) ≤ c lg (⌈ n /2 ⌉ − a ) + 1 ≤ c lg (( n + 1 ) /2 − a ) + 1 = c lg (( n + 1 − 2 a ) /2 ) + 1 = c lg ( n + 1 − 2 a ) − c lg 2 + 1 ≤ c lg ( n + 1 − 2 a ) ≤ c lg ( n − a ) , ( c ≥ 1 ) ( a ≥ 1 )
4.3-3
We saw that the solution of T ( n ) = 2 T ( ⌊ n / 2 ⌋ ) + n T(n) = 2T(\lfloor n / 2 \rfloor) + n T ( n ) = 2 T (⌊ n /2 ⌋) + n is O ( n lg n ) O(n\lg n) O ( n lg n ) . Show that the solution of this recurrence is also Ω ( n lg n ) \Omega(n\lg n) Ω ( n lg n ) . Conclude that the solution is Θ ( n lg n ) \Theta(n\lg n) Θ ( n lg n ) .
First, we guess T ( n ) ≤ c n lg n T(n) \le cn\lg n T ( n ) ≤ c n lg n ,
T ( n ) ≤ 2 c ⌊ n / 2 ⌋ lg ⌊ n / 2 ⌋ + n ≤ c n lg ( n / 2 ) + n = c n lg n − c n lg 2 + n = c n lg n + ( 1 − c ) n ≤ c n lg n ,
\begin{aligned}
T(n) & \le 2c\lfloor n / 2 \rfloor\lg{\lfloor n / 2 \rfloor} + n \\
& \le cn\lg(n / 2) + n \\
& = cn\lg n - cn\lg 2 + n \\
& = cn\lg n + (1 - c)n \\
& \le cn\lg n,
\end{aligned}
T ( n ) ≤ 2 c ⌊ n /2 ⌋ lg ⌊ n /2 ⌋ + n ≤ c n lg ( n /2 ) + n = c n lg n − c n lg 2 + n = c n lg n + ( 1 − c ) n ≤ c n lg n ,
where the last step holds for c ≥ 1 c \ge 1 c ≥ 1 .
Next, we guess T ( n ) ≥ c ( n + a ) lg ( n + a ) T(n) \ge c(n + a)\lg(n + a) T ( n ) ≥ c ( n + a ) lg ( n + a ) ,
T ( n ) ≥ 2 c ( ⌊ n / 2 ⌋ + a ) ( lg ( ⌊ n / 2 ⌋ + a ) + n ≥ 2 c ( ( n − 1 ) / 2 + a ) ( lg ( ( n − 1 ) / 2 + a ) ) + n = 2 c n − 1 + 2 a 2 lg n − 1 + 2 a 2 + n = c ( n − 1 + 2 a ) lg ( n − 1 + 2 a ) − c ( n − 1 + 2 a ) lg 2 + n = c ( n − 1 + 2 a ) lg ( n − 1 + 2 a ) + ( 1 − c ) n − ( 2 a − 1 ) c ( 0 ≤ c < 1 , n ≥ ( 2 a − 1 ) c 1 − c ) ≥ c ( n − 1 + 2 a ) lg ( n − 1 + 2 a ) ( a ≥ 1 ) ≥ c ( n + a ) lg ( n + a ) ,
\begin{aligned}
T(n) & \ge 2c(\lfloor n / 2 \rfloor + a)(\lg(\lfloor n / 2 \rfloor + a) + n \\
& \ge 2c((n - 1) / 2 + a)(\lg((n - 1) / 2 + a)) + n \\
& = 2c\frac{n - 1 + 2a}{2}\lg\frac{n - 1 + 2a}{2} + n \\
& = c(n - 1 + 2a)\lg(n - 1 + 2a) - c(n - 1 + 2a)\lg 2 + n \\
& = c(n - 1 + 2a)\lg(n - 1 + 2a) + (1 - c)n - (2a - 1)c & (0 \le c < 1, n \ge \frac{(2a - 1)c}{1 - c}) \\
& \ge c(n - 1 + 2a)\lg(n - 1 + 2a) & (a \ge 1) \\
& \ge c(n + a)\lg(n + a),
\end{aligned}
T ( n ) ≥ 2 c (⌊ n /2 ⌋ + a ) ( lg (⌊ n /2 ⌋ + a ) + n ≥ 2 c (( n − 1 ) /2 + a ) ( lg (( n − 1 ) /2 + a )) + n = 2 c 2 n − 1 + 2 a lg 2 n − 1 + 2 a + n = c ( n − 1 + 2 a ) lg ( n − 1 + 2 a ) − c ( n − 1 + 2 a ) lg 2 + n = c ( n − 1 + 2 a ) lg ( n − 1 + 2 a ) + ( 1 − c ) n − ( 2 a − 1 ) c ≥ c ( n − 1 + 2 a ) lg ( n − 1 + 2 a ) ≥ c ( n + a ) lg ( n + a ) , ( 0 ≤ c < 1 , n ≥ 1 − c ( 2 a − 1 ) c ) ( a ≥ 1 )
4.3-4
Show that by making a different inductive hyptohesis, we can overcome the difficulty with the boundary condition T ( 1 ) = 1 T(1) = 1 T ( 1 ) = 1 for recurrence (4.19) \text{(4.19)} (4.19) without adjusting the boundary conditions for the inductive proof.
We guess T ( n ) ≤ n lg n + n T(n) \le n\lg n + n T ( n ) ≤ n lg n + n ,
T ( n ) ≤ 2 ( c ⌊ n / 2 ⌋ lg ⌊ n / 2 ⌋ + ⌊ n / 2 ⌋ ) + n ≤ 2 c ( n / 2 ) lg ( n / 2 ) + 2 ( n / 2 ) + n = c n lg ( n / 2 ) + 2 n = c n lg n − c n lg 2 + 2 n = c n lg n + ( 2 − c ) n ≤ c n lg n + n ,
\begin{aligned}
T(n) & \le 2(c\lfloor n / 2 \rfloor\lg{\lfloor n / 2 \rfloor} + \lfloor n / 2 \rfloor) + n \\
& \le 2c(n / 2)\lg(n / 2) + 2(n / 2) + n \\
& = cn\lg(n / 2) + 2n \\
& = cn\lg n - cn\lg{2} + 2n \\
& = cn\lg n + (2 - c)n \\
& \le cn\lg n + n,
\end{aligned}
T ( n ) ≤ 2 ( c ⌊ n /2 ⌋ lg ⌊ n /2 ⌋ + ⌊ n /2 ⌋) + n ≤ 2 c ( n /2 ) lg ( n /2 ) + 2 ( n /2 ) + n = c n lg ( n /2 ) + 2 n = c n lg n − c n lg 2 + 2 n = c n lg n + ( 2 − c ) n ≤ c n lg n + n ,
where the last step holds for c ≥ 1 c \ge 1 c ≥ 1 .
This time, the boundary condition is
T ( 1 ) = 1 ≤ c n lg n + n = 0 + 1 = 1. T(1) = 1 \le cn\lg n + n = 0 + 1 = 1. T ( 1 ) = 1 ≤ c n lg n + n = 0 + 1 = 1.
4.3-5
Show that Θ ( n lg n ) \Theta(n\lg n) Θ ( n lg n ) is the solution to the "exact" recurrence (4.3) \text{(4.3)} (4.3) for merge sort.
The recurrence is
T ( n ) = T ( ⌈ n / 2 ⌉ ) + T ( ⌊ n / 2 ⌋ ) + Θ ( n ) (4.3) T(n) = T(\lceil n / 2 \rceil) + T(\lfloor n / 2 \rfloor) + \Theta(n) \tag{4.3} T ( n ) = T (⌈ n /2 ⌉) + T (⌊ n /2 ⌋) + Θ ( n ) ( 4.3 )
To show Θ \Theta Θ bound, separately show O O O and Ω \Omega Ω bounds.
For O ( n lg n ) O(n\lg n) O ( n lg n ) , we guess T ( n ) ≤ c ( n − 2 ) lg ( n − 2 ) − 2 c T(n) \le c(n - 2)\lg(n - 2) - 2c T ( n ) ≤ c ( n − 2 ) lg ( n − 2 ) − 2 c ,
T ( n ) ≤ c ( ⌈ n / 2 ⌉ − 2 ) lg ( ⌈ n / 2 ⌉ − 2 ) + c ( ⌊ n / 2 ⌋ − 2 ) lg ( ⌊ n / 2 ⌋ − 2 ) + d n ≤ c ( n / 2 + 1 − 2 ) lg ( n / 2 + 1 − 2 ) − 2 c + c ( n / 2 − 2 ) lg ( n / 2 − 2 ) − 2 c + d n ≤ c ( n / 2 − 1 ) lg ( n / 2 − 1 ) + c ( n / 2 − 1 ) lg ( n / 2 − 1 ) + d n = c n − 2 2 lg n − 2 2 + c n − 2 2 lg n − 2 2 − 4 c + d n = c ( n − 2 ) lg n − 2 2 − 4 c + d n = c ( n − 2 ) lg ( n − 2 ) − c ( n − 2 ) − 4 c + d n = c ( n − 2 ) lg ( n − 2 ) + ( d − c ) n + 2 c − 4 c ≤ c ( n − 2 ) lg ( n − 2 ) − 2 c ,
\begin{aligned}
T(n) & \le c(\lceil n / 2 \rceil -2 )\lg(\lceil n / 2 \rceil - 2) + c(\lfloor n / 2 \rfloor - 2)\lg(\lfloor n / 2 \rfloor - 2) + dn \\
& \le c(n / 2 + 1 - 2)\lg(n / 2 + 1 - 2) - 2c + c(n / 2 - 2)\lg(n / 2 - 2) - 2c + dn \\
& \le c(n / 2 - 1 )\lg(n / 2 - 1) + c(n / 2 - 1)\lg(n / 2 - 1) + dn \\
& = c\frac{n - 2}{2}\lg\frac{n - 2}{2} + c\frac{n - 2}{2}\lg\frac{n - 2}{2} - 4c + dn \\
& = c(n - 2)\lg\frac{n - 2}{2} - 4c + dn \\
& = c(n - 2)\lg(n - 2) - c(n - 2) - 4c + dn \\
& = c(n - 2)\lg(n - 2) + (d - c)n + 2c - 4c \\
& \le c(n - 2)\lg(n - 2) - 2c,
\end{aligned}
T ( n ) ≤ c (⌈ n /2 ⌉ − 2 ) lg (⌈ n /2 ⌉ − 2 ) + c (⌊ n /2 ⌋ − 2 ) lg (⌊ n /2 ⌋ − 2 ) + d n ≤ c ( n /2 + 1 − 2 ) lg ( n /2 + 1 − 2 ) − 2 c + c ( n /2 − 2 ) lg ( n /2 − 2 ) − 2 c + d n ≤ c ( n /2 − 1 ) lg ( n /2 − 1 ) + c ( n /2 − 1 ) lg ( n /2 − 1 ) + d n = c 2 n − 2 lg 2 n − 2 + c 2 n − 2 lg 2 n − 2 − 4 c + d n = c ( n − 2 ) lg 2 n − 2 − 4 c + d n = c ( n − 2 ) lg ( n − 2 ) − c ( n − 2 ) − 4 c + d n = c ( n − 2 ) lg ( n − 2 ) + ( d − c ) n + 2 c − 4 c ≤ c ( n − 2 ) lg ( n − 2 ) − 2 c ,
where the last step holds for c > d c > d c > d .
For Ω ( n lg n ) \Omega(n\lg n) Ω ( n lg n ) , we guess T ( n ) ≥ c ( n + 2 ) lg ( n + 2 ) + 2 c T(n) \ge c(n + 2)\lg (n + 2) + 2c T ( n ) ≥ c ( n + 2 ) lg ( n + 2 ) + 2 c ,
T ( n ) ≥ c ( ⌈ n / 2 ⌉ + 2 ) lg ( ⌈ n / 2 ⌉ + 2 ) + c ( ⌊ n / 2 ⌋ + 2 ) lg ( ⌊ n / 2 ⌋ + 2 ) + d n ≥ c ( n / 2 + 2 ) lg ( n / 2 + 2 ) + 2 c + c ( n / 2 − 1 + 2 ) lg ( n / 2 − 1 + 2 ) + 2 c + d n ≥ c ( n / 2 + 1 ) lg ( n / 2 + 1 ) + c ( n / 2 + 1 ) lg ( n / 2 + 1 ) + 4 c + d n ≥ c n + 2 2 lg n + 2 2 + c n + 2 2 lg n + 2 2 + 4 c + d n = c ( n + 2 ) lg n + 2 2 + 4 c + d n = c ( n + 2 ) lg ( n + 2 ) − c ( n + 2 ) + 4 c + d n = c ( n + 2 ) lg ( n + 2 ) + ( d − c ) n − 2 c + 4 c ≥ c ( n + 2 ) lg ( n + 2 ) + 2 c ,
\begin{aligned}
T(n) & \ge c(\lceil n / 2 \rceil +2 )\lg(\lceil n / 2 \rceil + 2) + c(\lfloor n / 2 \rfloor + 2)\lg(\lfloor n / 2 \rfloor + 2) + dn \\
& \ge c(n / 2 + 2)\lg(n / 2 + 2) + 2c + c(n / 2 - 1 + 2)\lg(n / 2 - 1 + 2) + 2c + dn \\
& \ge c(n / 2 + 1)\lg(n / 2 + 1) + c(n / 2 + 1)\lg(n / 2 + 1) + 4c + dn \\
& \ge c\frac{n + 2}{2}\lg\frac{n + 2}{2} + c\frac{n + 2}{2}\lg\frac{n + 2}{2} + 4c + dn \\
& = c(n + 2)\lg\frac{n + 2}{2} + 4c + dn \\
& = c(n + 2)\lg(n + 2) - c(n + 2) + 4c + dn \\
& = c(n + 2)\lg(n + 2) + (d - c)n - 2c + 4c \\
& \ge c(n + 2)\lg(n + 2) + 2c,
\end{aligned}
T ( n ) ≥ c (⌈ n /2 ⌉ + 2 ) lg (⌈ n /2 ⌉ + 2 ) + c (⌊ n /2 ⌋ + 2 ) lg (⌊ n /2 ⌋ + 2 ) + d n ≥ c ( n /2 + 2 ) lg ( n /2 + 2 ) + 2 c + c ( n /2 − 1 + 2 ) lg ( n /2 − 1 + 2 ) + 2 c + d n ≥ c ( n /2 + 1 ) lg ( n /2 + 1 ) + c ( n /2 + 1 ) lg ( n /2 + 1 ) + 4 c + d n ≥ c 2 n + 2 lg 2 n + 2 + c 2 n + 2 lg 2 n + 2 + 4 c + d n = c ( n + 2 ) lg 2 n + 2 + 4 c + d n = c ( n + 2 ) lg ( n + 2 ) − c ( n + 2 ) + 4 c + d n = c ( n + 2 ) lg ( n + 2 ) + ( d − c ) n − 2 c + 4 c ≥ c ( n + 2 ) lg ( n + 2 ) + 2 c ,
where the last step holds for d > c d > c d > c .
4.3-6
Show that the solution to T ( n ) = 2 T ( ⌊ n / 2 ⌋ + 17 ) + n T(n) = 2T(\lfloor n / 2 \rfloor + 17) + n T ( n ) = 2 T (⌊ n /2 ⌋ + 17 ) + n is O ( n lg n ) O(n\lg n) O ( n lg n ) .
We guess T ( n ) ≤ c ( n − a ) lg ( n − a ) T(n) \le c(n - a)\lg(n - a) T ( n ) ≤ c ( n − a ) lg ( n − a ) ,
T ( n ) ≤ 2 c ( ⌊ n / 2 ⌋ + 17 − a ) lg ( ⌊ n / 2 ⌋ + 17 − a ) + n ≤ 2 c ( n / 2 + 17 − a ) lg ( n / 2 + 17 − a ) + n = c ( n + 34 − 2 a ) lg n + 34 − 2 a 2 + n = c ( n + 34 − 2 a ) lg ( n + 34 − 2 a ) − c ( n + 34 − 2 a ) + n ( c > 1 , n > n 0 = f ( a ) ) ≤ c ( n + 34 − 2 a ) lg ( n + 34 − 2 a ) ( a ≥ 34 ) ≤ c ( n − a ) lg ( n − a ) .
\begin{aligned}
T(n) & \le 2c(\lfloor n / 2 \rfloor + 17 - a)\lg(\lfloor n / 2 \rfloor + 17 - a) + n \\
& \le 2c(n / 2 + 17 - a)\lg(n / 2 + 17 - a) + n \\
& = c(n + 34 - 2a)\lg\frac{n + 34 - 2a}{2} + n \\
& = c(n + 34 - 2a)\lg(n + 34 - 2a) - c(n + 34 - 2a) + n & (c > 1, n > n_0 = f(a)) \\
& \le c(n + 34 - 2a)\lg(n + 34 - 2a) & (a \ge 34) \\
& \le c(n - a)\lg(n - a).
\end{aligned}
T ( n ) ≤ 2 c (⌊ n /2 ⌋ + 17 − a ) lg (⌊ n /2 ⌋ + 17 − a ) + n ≤ 2 c ( n /2 + 17 − a ) lg ( n /2 + 17 − a ) + n = c ( n + 34 − 2 a ) lg 2 n + 34 − 2 a + n = c ( n + 34 − 2 a ) lg ( n + 34 − 2 a ) − c ( n + 34 − 2 a ) + n ≤ c ( n + 34 − 2 a ) lg ( n + 34 − 2 a ) ≤ c ( n − a ) lg ( n − a ) . ( c > 1 , n > n 0 = f ( a )) ( a ≥ 34 )
4.3-7
Using the master method in Section 4.5, you can show that the solution to the recurrence T ( n ) = 4 T ( n / 3 ) + n T(n) = 4T(n / 3) + n T ( n ) = 4 T ( n /3 ) + n is T ( n ) = Θ ( n log 3 4 ) T(n) = \Theta(n^{\log_3 4}) T ( n ) = Θ ( n l o g 3 4 ) . Show that a substitution proof with the assumption T ( n ) ≤ c n log 3 4 T(n) \le cn^{\log_3 4} T ( n ) ≤ c n l o g 3 4 fails. Then show how to subtract off a lower-order term to make the substitution proof work.
We guess T ( n ) ≤ c n log 3 4 T(n) \le cn^{\log_3 4} T ( n ) ≤ c n l o g 3 4 first,
T ( n ) ≤ 4 c ( n / 3 ) log 3 4 + n = c n log 3 4 + n .
\begin{aligned}
T(n) & \le 4c(n / 3)^{\log_3 4} + n \\
& = cn^{\log_3 4} + n.
\end{aligned}
T ( n ) ≤ 4 c ( n /3 ) l o g 3 4 + n = c n l o g 3 4 + n .
We stuck here.
We guess T ( n ) ≤ c n log 3 4 − d n T(n) \le cn^{\log_3 4} - dn T ( n ) ≤ c n l o g 3 4 − d n again,
T ( n ) ≤ 4 ( c ( n / 3 ) log 3 4 − d n / 3 ) + n = 4 ( c n log 3 4 / 4 − d n / 3 ) + n = c n log 3 4 − 4 3 d n + n ≤ c n log 3 4 − d n ,
\begin{aligned}
T(n) & \le 4(c(n / 3)^{\log_3 4} - dn / 3) + n \\
& = 4(cn^{\log_3 4} / 4 - dn / 3) + n \\
& = cn^{\log_3 4} - \frac{4}{3}dn + n \\
& \le cn^{\log_3 4} - dn,
\end{aligned}
T ( n ) ≤ 4 ( c ( n /3 ) l o g 3 4 − d n /3 ) + n = 4 ( c n l o g 3 4 /4 − d n /3 ) + n = c n l o g 3 4 − 3 4 d n + n ≤ c n l o g 3 4 − d n ,
where the last step holds for d ≥ 3 d \ge 3 d ≥ 3 .
4.3-8
Using the master method in Section 4.5, you can show that the solution to the recurrence T ( n ) = 4 T ( n / 2 ) + n T(n) = 4T(n / 2) + n T ( n ) = 4 T ( n /2 ) + n is T ( n ) = Θ ( n 2 ) T(n) = \Theta(n^2) T ( n ) = Θ ( n 2 ) . Show that a substitution proof with the assumption T ( n ) ≤ c n 2 T(n) \le cn^2 T ( n ) ≤ c n 2 fails. Then show how to subtract off a lower-order term to make the substitution proof work.
First, let's try the guess T ( n ) ≤ c n 2 T(n) \le cn^2 T ( n ) ≤ c n 2 . Then, we have
T ( n ) = 4 T ( n / 2 ) + n ≤ 4 c ( n / 2 ) 2 + n = c n 2 + n .
\begin{aligned}
T(n) &= 4T(n / 2) + n \\
&\le 4c(n / 2)^2 + n \\
&= cn^2 + n.
\end{aligned}
T ( n ) = 4 T ( n /2 ) + n ≤ 4 c ( n /2 ) 2 + n = c n 2 + n .
We can't proceed any further from the inequality above to conclude T ( n ) ≤ c n 2 T(n) \le cn^2 T ( n ) ≤ c n 2 .
Alternatively, let us try the guess
T ( n ) ≤ c n 2 − c n , T(n) \le cn^2 - cn, T ( n ) ≤ c n 2 − c n ,
which subtracts off a lower-order term. Now we have
T ( n ) = 4 T ( n / 2 ) + n = 4 ( c ( n / 2 ) 2 − c ( n / 2 ) ) + n = 4 c ( n / 2 ) 2 − 4 c ( n / 2 ) + n = c n 2 + ( 1 − 2 c ) n ≤ c n 2 ,
\begin{aligned}
T(n) &= 4T(n / 2) + n \\
&= 4\left(c(n / 2)^2 - c(n / 2)\right) + n \\
&= 4c(n / 2)^2 - 4c(n / 2) + n \\
&= cn^2 + (1 - 2c)n \\
&\le cn^2,
\end{aligned}
T ( n ) = 4 T ( n /2 ) + n = 4 ( c ( n /2 ) 2 − c ( n /2 ) ) + n = 4 c ( n /2 ) 2 − 4 c ( n /2 ) + n = c n 2 + ( 1 − 2 c ) n ≤ c n 2 ,
where the last step holds for c ≥ 1 / 2 c \ge 1 / 2 c ≥ 1/2 .
4.3-9
Solve the recurrence T ( n ) = 3 T ( n ) + log n T(n) = 3T(\sqrt n) + \log n T ( n ) = 3 T ( n ) + log n by making a change of variables. Your solution should be asymptotically tight. Do not worry about whether values are integral.
First,
T ( n ) = 3 T ( n ) + lg n let m = lg n T ( 2 m ) = 3 T ( 2 m / 2 ) + m S ( m ) = 3 S ( m / 2 ) + m .
\begin{aligned}
T(n) & = 3T(\sqrt n) + \lg n & \text{ let } m = \lg n \\
T(2^m) & = 3T(2^{m / 2}) + m \\
S(m) & = 3S(m / 2) + m.
\end{aligned}
T ( n ) T ( 2 m ) S ( m ) = 3 T ( n ) + lg n = 3 T ( 2 m /2 ) + m = 3 S ( m /2 ) + m . let m = lg n
Now we guess S ( m ) ≤ c m lg 3 + d m S(m) \le cm^{\lg 3} + dm S ( m ) ≤ c m l g 3 + d m ,
S ( m ) ≤ 3 ( c ( m / 2 ) lg 3 + d ( m / 2 ) ) + m ≤ c m lg 3 + ( 3 2 d + 1 ) m ( d ≤ − 2 ) ≤ c m lg 3 + d m .
\begin{aligned}
S(m) & \le 3\Big(c(m / 2)^{\lg 3} + d(m / 2)\Big) + m \\
& \le cm^{\lg 3} + (\frac{3}{2}d + 1)m & (d \le -2) \\
& \le cm^{\lg 3} + dm.
\end{aligned}
S ( m ) ≤ 3 ( c ( m /2 ) l g 3 + d ( m /2 ) ) + m ≤ c m l g 3 + ( 2 3 d + 1 ) m ≤ c m l g 3 + d m . ( d ≤ − 2 )
Then we guess S ( m ) ≥ c m lg 3 + d m S(m) \ge cm^{\lg 3} + dm S ( m ) ≥ c m l g 3 + d m ,
S ( m ) ≥ 3 ( c ( m / 2 ) lg 3 + d ( m / 2 ) ) + m ≥ c m lg 3 + ( 3 2 d + 1 ) m ( d ≥ − 2 ) ≥ c m lg 3 + d m .
\begin{aligned}
S(m) & \ge 3\Big(c(m / 2)^{\lg 3} + d(m / 2)\Big) + m \\
& \ge cm^{\lg 3} + (\frac{3}{2}d + 1)m & (d \ge -2) \\
& \ge cm^{\lg 3} + dm.
\end{aligned}
S ( m ) ≥ 3 ( c ( m /2 ) l g 3 + d ( m /2 ) ) + m ≥ c m l g 3 + ( 2 3 d + 1 ) m ≥ c m l g 3 + d m . ( d ≥ − 2 )
Thus,
S ( m ) = Θ ( m lg 3 ) T ( n ) = Θ ( lg lg 3 n ) .
\begin{aligned}
S(m) & = \Theta(m^{\lg 3}) \\
T(n) & = \Theta(\lg^{\lg 3}{n}).
\end{aligned}
S ( m ) T ( n ) = Θ ( m l g 3 ) = Θ ( lg l g 3 n ) .