3-2 Relative asymptotic growths

Indicate for each pair of expressions (A,B)(A, B) in the table below, whether AA is OO, oo, Ω\Omega, ω\omega, or Θ\Theta of BB. Assume that k1k \ge 1, ϵ>0\epsilon > 0, and c>1c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

ABOoΩωΘlgknnϵyesyesnonononkcnyesyesnonononnsinnnonononono2n2n/2nonoyesyesnonlgcclgnyesnoyesnoyeslg(n!)lg(nn)yesnoyesnoyes \begin{array}{ccccccc} A & B & O & o & \Omega & \omega & \Theta \\ \hline \lg^k n & n^\epsilon & yes & yes & no & no & no \\ n^k & c^n & yes & yes & no & no & no \\ \sqrt n & n^{\sin n} & no & no & no & no & no \\ 2^n & 2^{n / 2} & no & no & yes & yes & no \\ n^{\lg c} & c^{\lg n} & yes & no & yes & no & yes \\ \lg(n!) & \lg(n^n) & yes & no & yes & no & yes \end{array}