3-1 Asymptotic behavior of polynomials

Let

p(n)=i=0daini,p(n) = \sum_{i = 0}^d a_i n^i,

where ad>0a_d > 0, be a degree-dd polynomial in nn, and let kk be a constant. Use the definitions of the asymptotic notations to prove the following properties.

a. If kdk \ge d, then p(n)=O(nk)p(n) = O(n^k).

b. If kdk \le d, then p(n)=Ω(nk)p(n) = \Omega(n^k).

c. If k=dk = d, then p(n)=Θ(nk)p(n) = \Theta(n^k).

d. If k>dk > d, then p(n)=o(nk)p(n) = o(n^k).

e. If k<dk < d, then p(n)=ω(nk)p(n) = \omega(n^k).

Let's see that p(n)=O(nd)p(n) = O(n^d). We need do pick c=ad+bc = a_d + b, such that

i=0daini=adnd+ad1nd1++a1n+a0cnd.\sum\limits_{i = 0}^d a_i n^i = a_d n^d + a_{d - 1}n^{d - 1} + \cdots + a_1n + a_0 \le cn^d.

When we divide by ndn^d, we get

c=ad+bad+ad1n+ad2n2++a0nd.c = a_d + b \ge a_d + \frac{a_{d - 1}}n + \frac{a_{d - 2}}{n^2} + \cdots + \frac{a_0}{n^d}.

and

bad1n+ad2n2++a0nd.b \ge \frac{a_{d - 1}}n + \frac{a_{d - 2}}{n^2} + \cdots + \frac{a_0}{n^d}.

If we choose b=1b = 1, then we can choose n0n_0,

n0=max(dad1,dad2,,da0d).n_0 = \max(da_{d - 1}, d\sqrt{a_{d - 2}}, \ldots, d\sqrt[d]{a_0}).

Now we have n0n_0 and cc, such that

p(n)cndfor nn0,p(n) \le cn^d \quad \text{for } n \ge n_0,

which is the definition of O(nd)O(n^d).

By chosing b=1b = -1 we can prove the Ω(nd)\Omega(n^d) inequality and thus the Θ(nd)\Theta(n^d) inequality.

It is very similar to prove the other inequalities.