4-4 Fibonacci numbers
This problem develops properties of the Fibonacci numbers, which are defined by recurrence (3.22) \text{(3.22)} (3.22) . We shall use the technique of generating functions to solve the Fibonacci recurrence. Define the generating function (or formal power series ) F \mathcal F F as
F ( z ) = ∑ i = 0 ∞ F i z i = 0 + z + z 2 + 2 z 3 + 3 z 4 + 5 z 5 + 8 z 6 + 13 z 7 + 21 z 8 + ⋯ ,
\begin{aligned}
\mathcal F(z)
& = \sum_{i = 0}^{\infty} F_iz^i \\
& = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + 13z^7 + 21z^8 + \cdots,
\end{aligned}
F ( z ) = i = 0 ∑ ∞ F i z i = 0 + z + z 2 + 2 z 3 + 3 z 4 + 5 z 5 + 8 z 6 + 13 z 7 + 21 z 8 + ⋯ ,
where F i F_i F i is the i i i th Fibonacci number.
a. Show that F ( z ) = z + z F ( z ) + z 2 F \mathcal F(z) = z + z\mathcal F(z) + z^2\mathcal F F ( z ) = z + z F ( z ) + z 2 F .
b. Show that
F ( z ) = z 1 − z − z 2 = z ( 1 − ϕ z ) ( 1 − ϕ ^ z ) = 1 5 ( 1 1 − ϕ z − 1 1 − ϕ ^ z ) ,
\begin{aligned}
\mathcal F(z)
& = \frac{z}{1 - z - z^2} \\
& = \frac{z}{(1 - \phi z)(1 - \hat\phi z)} \\
& = \frac{1}{\sqrt 5}\Big(\frac{1}{1 - \phi z} - \frac{1}{1 - \hat{\phi} z}\Big),
\end{aligned}
F ( z ) = 1 − z − z 2 z = ( 1 − ϕ z ) ( 1 − ϕ ^ z ) z = 5 1 ( 1 − ϕ z 1 − 1 − ϕ ^ z 1 ) ,
where
ϕ = 1 + 5 2 = 1.61803 … \phi = \frac{1 + \sqrt 5}{2} = 1.61803\ldots ϕ = 2 1 + 5 = 1.61803 …
and
ϕ ^ = 1 − 5 2 = − 0.61803 … \hat\phi = \frac{1 - \sqrt 5}{2} = -0.61803\ldots ϕ ^ = 2 1 − 5 = − 0.61803 …
c. Show that
F ( z ) = ∑ i = 0 ∞ 1 5 ( ϕ i − ϕ ^ i ) z i . \mathcal F(z) = \sum_{i = 0}^{\infty}\frac{1}{\sqrt 5}(\phi^i - \hat{\phi}^i)z^i. F ( z ) = i = 0 ∑ ∞ 5 1 ( ϕ i − ϕ ^ i ) z i .
d. Use part (c) to prove that F i = ϕ i / 5 F_i = \phi^i / \sqrt 5 F i = ϕ i / 5 for i > 0 i > 0 i > 0 , rounded to the nearest integer. (Hint: \textit{Hint:} Hint: Observe that ∣ ϕ ^ ∣ < 1 |\hat{\phi}| < 1 ∣ ϕ ^ ∣ < 1 .)
a.
z + z F ( z ) + z 2 F ( Z ) = z + z ∑ i = 0 ∞ F i z i + z 2 ∑ i = 0 ∞ F i z i = z + ∑ i = 1 ∞ F i − 1 z i + ∑ i = 2 ∞ F i − 2 z i = z + F 1 z + ∑ i = 2 ∞ ( F i − 1 + F i − 2 ) z i = z + F 1 z + ∑ i = 2 ∞ F i z i = F ( z ) .
\begin{aligned} z + z\mathcal F(z) + z^2\mathcal F(Z)
& = z + z\sum_{i = 0}^{\infty} F_iz^i + z^2\sum_{i = 0}^{\infty}F_i z^i \\
& = z + \sum_{i = 1}^{\infty} F_{i - 1}z^i + \sum_{i = 2}^{\infty}F_{i - 2} z^i \\
& = z + F_1z + \sum_{i = 2}^{\infty}(F_{i - 1} + F_{i - 2})z^i \\
& = z + F_1z + \sum_{i = 2}^{\infty}F_iz^i \\
& = \mathcal F(z).
\end{aligned}
z + z F ( z ) + z 2 F ( Z ) = z + z i = 0 ∑ ∞ F i z i + z 2 i = 0 ∑ ∞ F i z i = z + i = 1 ∑ ∞ F i − 1 z i + i = 2 ∑ ∞ F i − 2 z i = z + F 1 z + i = 2 ∑ ∞ ( F i − 1 + F i − 2 ) z i = z + F 1 z + i = 2 ∑ ∞ F i z i = F ( z ) .
b. Note that ϕ − ϕ ^ = 5 \phi - \hat\phi = \sqrt 5 ϕ − ϕ ^ = 5 , ϕ + ϕ ^ = 1 \phi + \hat\phi = 1 ϕ + ϕ ^ = 1 and ϕ ϕ ^ = − 1 \phi\hat\phi = - 1 ϕ ϕ ^ = − 1 .
F ( z ) = F ( z ) ( 1 − z − z 2 ) 1 − z − z 2 = F ( z ) − z F ( z ) − z 2 F ( z ) − z + z 1 − z − z 2 = F ( z ) − F ( z ) + z 1 − z − z 2 = z 1 − z − z 2 = z 1 − ( ϕ + ϕ ^ ) z + ϕ ϕ ^ z 2 = z ( 1 − ϕ z ) ( 1 − ϕ ^ z ) = 5 z 5 ( 1 − ϕ z ) ( 1 − ϕ ^ z ) = ( ϕ − ϕ ^ ) z + 1 − 1 5 ( 1 − ϕ z ) ( 1 − ϕ ^ z ) = ( 1 − ϕ ^ z ) − ( 1 − ϕ z ) 5 ( 1 − ϕ z ) ( 1 − ϕ ^ z ) = 1 5 ( 1 1 − ϕ z − 1 1 − ϕ ^ z ) .
\begin{aligned}
\mathcal F(z) & = \frac{\mathcal F(z)(1 - z - z^2)}{1 - z - z^2} \\
& = \frac{\mathcal F(z) - z\mathcal F(z) - z^2\mathcal F(z) - z + z}{1 - z - z^2} \\
& = \frac{\mathcal F(z) - \mathcal F(z) + z}{1 - z - z^2} \\
& = \frac{z}{1 - z - z^2} \\
& = \frac{z}{1 - (\phi + \hat\phi)z + \phi\hat\phi z^2} \\
& = \frac{z}{(1 - \phi z)(1 - \hat\phi z)} \\
& = \frac{\sqrt 5 z}{\sqrt 5 (1 - \phi z)(1 - \hat\phi z)} \\
& = \frac{(\phi - \hat\phi)z + 1 - 1}{\sqrt 5 (1 - \phi z)(1 - \hat\phi z)} \\
& = \frac{(1 - \hat\phi z) - (1 - \phi z)}{\sqrt 5 (1 - \phi z)(1 - \hat\phi z)} \\
& = \frac{1}{\sqrt 5}\Big(\frac{1}{1 - \phi z} - \frac{1}{1 - \hat\phi z}\Big).
\end{aligned}
F ( z ) = 1 − z − z 2 F ( z ) ( 1 − z − z 2 ) = 1 − z − z 2 F ( z ) − z F ( z ) − z 2 F ( z ) − z + z = 1 − z − z 2 F ( z ) − F ( z ) + z = 1 − z − z 2 z = 1 − ( ϕ + ϕ ^ ) z + ϕ ϕ ^ z 2 z = ( 1 − ϕ z ) ( 1 − ϕ ^ z ) z = 5 ( 1 − ϕ z ) ( 1 − ϕ ^ z ) 5 z = 5 ( 1 − ϕ z ) ( 1 − ϕ ^ z ) ( ϕ − ϕ ^ ) z + 1 − 1 = 5 ( 1 − ϕ z ) ( 1 − ϕ ^ z ) ( 1 − ϕ ^ z ) − ( 1 − ϕ z ) = 5 1 ( 1 − ϕ z 1 − 1 − ϕ ^ z 1 ) .
c. We have 1 1 − x = ∑ k = 0 ∞ x k \frac{1}{1 - x} = \sum_{k = 0}^{\infty}x^k 1 − x 1 = ∑ k = 0 ∞ x k , when ∣ x ∣ < 1 |x| < 1 ∣ x ∣ < 1 , thus
F ( n ) = 1 5 ( 1 1 − ϕ z − 1 1 − ϕ ^ z ) = 1 5 ( ∑ i = 0 ∞ ϕ i z i − ∑ i = 0 ∞ ϕ ^ i z i ) = ∑ i = 0 ∞ 1 5 ( ϕ i − ϕ ^ i ) z i .
\begin{aligned}
\mathcal F(n) & = \frac{1}{\sqrt 5}\Big(\frac{1}{1 - \phi z} - \frac{1}{1 - \hat\phi z}\Big) \\
& = \frac{1}{\sqrt 5}\Big(\sum_{i = 0}^{\infty}\phi^i z^i - \sum_{i = 0}^{\infty}\hat{\phi}^i z^i\Big) \\
& = \sum_{i = 0}^{\infty}\frac{1}{\sqrt 5}(\phi^i - \hat{\phi}^i) z^i.
\end{aligned}
F ( n ) = 5 1 ( 1 − ϕ z 1 − 1 − ϕ ^ z 1 ) = 5 1 ( i = 0 ∑ ∞ ϕ i z i − i = 0 ∑ ∞ ϕ ^ i z i ) = i = 0 ∑ ∞ 5 1 ( ϕ i − ϕ ^ i ) z i .
d. F ( z ) = ∑ i = 0 ∞ α i z i \mathcal F(z) = \sum_{i = 0}^{\infty}\alpha_i z^i F ( z ) = ∑ i = 0 ∞ α i z i where α i = ϕ i − ϕ ^ i 5 \alpha_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt 5} α i = 5 ϕ i − ϕ ^ i . From this follows that α i = F i \alpha_i = F_i α i = F i , that is
F i = ϕ i − ϕ ^ i 5 = ϕ i 5 − ϕ ^ i 5 , F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt 5} = \frac{\phi^i}{\sqrt 5} - \frac{\hat{\phi}^i}{\sqrt 5}, F i = 5 ϕ i − ϕ ^ i = 5 ϕ i − 5 ϕ ^ i ,
For i = 1 i = 1 i = 1 , ϕ / 5 = ( 5 + 5 ) / 10 > 0.5 \phi / \sqrt 5 = (\sqrt 5 + 5) / 10 > 0.5 ϕ / 5 = ( 5 + 5 ) /10 > 0.5 . For i > 2 i > 2 i > 2 , ∣ ϕ ^ i ∣ < 0.5 |\hat{\phi}^i| < 0.5 ∣ ϕ ^ i ∣ < 0.5 .