4-4 Fibonacci numbers

This problem develops properties of the Fibonacci numbers, which are defined by recurrence (3.22)\text{(3.22)}. We shall use the technique of generating functions to solve the Fibonacci recurrence. Define the generating function (or formal power series) F\mathcal F as

F(z)=i=0Fizi=0+z+z2+2z3+3z4+5z5+8z6+13z7+21z8+, \begin{aligned} \mathcal F(z) & = \sum_{i = 0}^{\infty} F_iz^i \\ & = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + 13z^7 + 21z^8 + \cdots, \end{aligned}

where FiF_i is the iith Fibonacci number.

a. Show that F(z)=z+zF(z)+z2F\mathcal F(z) = z + z\mathcal F(z) + z^2\mathcal F.

b. Show that

F(z)=z1zz2=z(1ϕz)(1ϕ^z)=15(11ϕz11ϕ^z), \begin{aligned} \mathcal F(z) & = \frac{z}{1 - z - z^2} \\ & = \frac{z}{(1 - \phi z)(1 - \hat\phi z)} \\ & = \frac{1}{\sqrt 5}\Big(\frac{1}{1 - \phi z} - \frac{1}{1 - \hat{\phi} z}\Big), \end{aligned}

where

ϕ=1+52=1.61803\phi = \frac{1 + \sqrt 5}{2} = 1.61803\ldots

and

ϕ^=152=0.61803\hat\phi = \frac{1 - \sqrt 5}{2} = -0.61803\ldots

c. Show that

F(z)=i=015(ϕiϕ^i)zi.\mathcal F(z) = \sum_{i = 0}^{\infty}\frac{1}{\sqrt 5}(\phi^i - \hat{\phi}^i)z^i.

d. Use part (c) to prove that Fi=ϕi/5F_i = \phi^i / \sqrt 5 for i>0i > 0, rounded to the nearest integer. (Hint:\textit{Hint:} Observe that ϕ^<1|\hat{\phi}| < 1.)

a.

z+zF(z)+z2F(Z)=z+zi=0Fizi+z2i=0Fizi=z+i=1Fi1zi+i=2Fi2zi=z+F1z+i=2(Fi1+Fi2)zi=z+F1z+i=2Fizi=F(z). \begin{aligned} z + z\mathcal F(z) + z^2\mathcal F(Z) & = z + z\sum_{i = 0}^{\infty} F_iz^i + z^2\sum_{i = 0}^{\infty}F_i z^i \\ & = z + \sum_{i = 1}^{\infty} F_{i - 1}z^i + \sum_{i = 2}^{\infty}F_{i - 2} z^i \\ & = z + F_1z + \sum_{i = 2}^{\infty}(F_{i - 1} + F_{i - 2})z^i \\ & = z + F_1z + \sum_{i = 2}^{\infty}F_iz^i \\ & = \mathcal F(z). \end{aligned}

b. Note that ϕϕ^=5\phi - \hat\phi = \sqrt 5, ϕ+ϕ^=1\phi + \hat\phi = 1 and ϕϕ^=1\phi\hat\phi = - 1.

F(z)=F(z)(1zz2)1zz2=F(z)zF(z)z2F(z)z+z1zz2=F(z)F(z)+z1zz2=z1zz2=z1(ϕ+ϕ^)z+ϕϕ^z2=z(1ϕz)(1ϕ^z)=5z5(1ϕz)(1ϕ^z)=(ϕϕ^)z+115(1ϕz)(1ϕ^z)=(1ϕ^z)(1ϕz)5(1ϕz)(1ϕ^z)=15(11ϕz11ϕ^z). \begin{aligned} \mathcal F(z) & = \frac{\mathcal F(z)(1 - z - z^2)}{1 - z - z^2} \\ & = \frac{\mathcal F(z) - z\mathcal F(z) - z^2\mathcal F(z) - z + z}{1 - z - z^2} \\ & = \frac{\mathcal F(z) - \mathcal F(z) + z}{1 - z - z^2} \\ & = \frac{z}{1 - z - z^2} \\ & = \frac{z}{1 - (\phi + \hat\phi)z + \phi\hat\phi z^2} \\ & = \frac{z}{(1 - \phi z)(1 - \hat\phi z)} \\ & = \frac{\sqrt 5 z}{\sqrt 5 (1 - \phi z)(1 - \hat\phi z)} \\ & = \frac{(\phi - \hat\phi)z + 1 - 1}{\sqrt 5 (1 - \phi z)(1 - \hat\phi z)} \\ & = \frac{(1 - \hat\phi z) - (1 - \phi z)}{\sqrt 5 (1 - \phi z)(1 - \hat\phi z)} \\ & = \frac{1}{\sqrt 5}\Big(\frac{1}{1 - \phi z} - \frac{1}{1 - \hat\phi z}\Big). \end{aligned}

c. We have 11x=k=0xk\frac{1}{1 - x} = \sum_{k = 0}^{\infty}x^k, when x<1|x| < 1, thus

F(n)=15(11ϕz11ϕ^z)=15(i=0ϕizii=0ϕ^izi)=i=015(ϕiϕ^i)zi. \begin{aligned} \mathcal F(n) & = \frac{1}{\sqrt 5}\Big(\frac{1}{1 - \phi z} - \frac{1}{1 - \hat\phi z}\Big) \\ & = \frac{1}{\sqrt 5}\Big(\sum_{i = 0}^{\infty}\phi^i z^i - \sum_{i = 0}^{\infty}\hat{\phi}^i z^i\Big) \\ & = \sum_{i = 0}^{\infty}\frac{1}{\sqrt 5}(\phi^i - \hat{\phi}^i) z^i. \end{aligned}

d. F(z)=i=0αizi\mathcal F(z) = \sum_{i = 0}^{\infty}\alpha_i z^i where αi=ϕiϕ^i5\alpha_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt 5}. From this follows that αi=Fi\alpha_i = F_i, that is

Fi=ϕiϕ^i5=ϕi5ϕ^i5,F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt 5} = \frac{\phi^i}{\sqrt 5} - \frac{\hat{\phi}^i}{\sqrt 5},

For i=1i = 1, ϕ/5=(5+5)/10>0.5\phi / \sqrt 5 = (\sqrt 5 + 5) / 10 > 0.5. For i>2i > 2, ϕ^i<0.5|\hat{\phi}^i| < 0.5.