3-6 Iterated functions

We can apply the iteration operator โˆ—^* used in the lgโกโˆ—\lg^* function to any monotonically increasing function f(n)f(n) over the reals. For a given constant cโˆˆRc \in \mathbb R, we define the iterated function fcโˆ—{f_c}^* by fcโˆ—(n)=minโก{iโ‰ฅ0:f(i)(n)โ‰คc}{f_c}^*(n) = \min \{i \ge 0 : f^{(i)}(n) \le c \} which need not be well defined in all cases. In other words, the quantity fcโˆ—(n){f_c}^*(n) is the number of iterated applications of the function ff required to reduce its argument down to cc or less.

For each of the following functions f(n)f(n) and constants cc, give as tight a bound as possible on fcโˆ—(n){f_c}^*(n).

f(n)cfcโˆ—nโˆ’10ฮ˜(n)lgโกn1ฮ˜(lgโกโˆ—n)n/21ฮ˜(lgโกn)n/22ฮ˜(lgโกn)n2ฮ˜(lgโกlgโกn)n1does not convergen1/32ฮ˜(logโก3lgโกn)n/lgโกn2ฯ‰(lgโกlgโกn),o(lgโกn) \begin{array}{ccl} f(n) & c & {f_c}^* \\ \hline n - 1 & 0 & \Theta(n) \\ \lg n & 1 & \Theta(\lg^*{n}) \\ n / 2 & 1 & \Theta(\lg n) \\ n / 2 & 2 & \Theta(\lg n) \\ \sqrt n & 2 & \Theta(\lg\lg n) \\ \sqrt n & 1 & \text{does not converge} \\ n^{1 / 3} & 2 & \Theta(\log_3{\lg n}) \\ n / \lg n & 2 & \omega(\lg\lg n), o(\lg n) \end{array}